§ 25.581 and 25.427 (a) through (c), at speeds up to $V_{\rm C}.\,$ - (4) The limit yaw maneuvering conditions specified in \$25.351(a) at the specified speeds up to V_C . - (5) For pressurized cabins, the following conditions: - (i) The normal operating differential pressure combined with the expected external aerodynamic pressures applied simultaneously with the flight loading conditions specified in paragraphs (b)(1) through (4) of this section, if they have a significant effect. - (ii) The maximum value of normal operating differential pressure (including the expected external aerodynamic pressures during 1 g level flight) multiplied by a factor of 1.15, omitting other loads. - (6) For landing gear and directly-affected airframe structure, the limit ground loading conditions specified in §§ 25.473, 25.491, and 25.493. - If significant changes in structural stiffness or geometry, or both, follow from a structural failure, or partial failure, the effect on damage tolerance must be further investigated. - (c) Fatigue (safe-life) evaluation. Compliance with the damage-tolerance requirements of paragraph (b) of this section is not required if the applicant establishes that their application for particular structure is impractical. This structure must be shown by analysis, supported by test evidence, to be able to withstand the repeated loads of variable magnitude expected during its service life without detectable cracks. Appropriate safe-life scatter factors must be applied. - (d) Sonic fatigue strength. It must be shown by analysis, supported by test evidence, or by the service history of airplanes of similar structural design and sonic excitation environment, that— - (1) Sonic fatigue cracks are not probable in any part of the flight structure subject to sonic excitation; or - (2) Catastrophic failure caused by sonic cracks is not probable assuming that the loads prescribed in paragraph (b) of this section are applied to all areas affected by those cracks. - (e) Damage-tolerance (discrete source) evaluation. The airplane must be capable of successfully completing a flight during which likely structural damage occurs as a result of— - (1) Impact with a 4-pound bird when the velocity of the airplane relative to the bird along the airplane's flight path is equal to $V_{\rm c}$ at sea level or $0.85V_{\rm c}$ at 8,000 feet, whichever is more critical; - (2) Uncontained fan blade impact; - (3) Uncontained engine failure; or - (4) Uncontained high energy rotating machinery failure. The damaged structure must be able to withstand the static loads (considered as ultimate loads) which are reasonably expected to occur on the flight. Dynamic effects on these static loads need not be considered. Corrective action to be taken by the pilot following the incident, such as limiting maneuvers, avoiding turbulence, and reducing speed, must be considered. If significant changes in structural stiffness or geometry, or both, follow from a structural failure or partial failure, the effect on damage tolerance must be further investigated. [Amdt. 25–45, 43 FR 46242, Oct. 5, 1978, as amended by Amdt. 25–54, 45 FR 60173, Sept. 11, 1980; Amdt. 25–72, 55 FR 29776, July 20, 1990; Amdt. 25–86, 61 FR 5222, Feb. 9, 1996; Amdt. 25–96, 63 FR 15714, Mar. 31, 1998; 63 FR 23338, Apr. 28, 1998; Amdt. 25–132, 75 FR 69781, Nov. 15, 2010] ## LIGHTNING PROTECTION ## $\S 25.581$ Lightning protection. - (a) The airplane must be protected against catastrophic effects from lightning. - (b) For metallic components, compliance with paragraph (a) of this section may be shown by— - (1) Bonding the components properly to the airframe: or - (2) Designing the components so that a strike will not endanger the airplane. - (c) For nonmetallic components, compliance with paragraph (a) of this section may be shown by— - (1) Designing the components to minimize the effect of a strike; or - (2) Incorporating acceptable means of diverting the resulting electrical current so as not to endanger the airplane. $[{\rm Amdt.}\ 25\text{--}23,\ 35\ {\rm FR}\ 5674,\ {\rm Apr.}\ 8,\ 1970]$